TOPPAN DIGITAL LANGUAGE

Why Isn’t the Healthcare Industry Adopting AI Quickly?

Why isn’t the healthcare industry adopting AI quickly blog image

Although demand for healthcare is increasing in many parts of the world, this demand isn’t always being met. Whether it’s health services struggling to meet the needs of ageing populations or rural patients not having access to local services, there’s often a shortfall in supply. Patients also expect better outcomes than health service can necessarily deliver.

Artificial intelligence (AI) could be part of the solution. AI technologies could help to improve access to care, improve outcomes and make better use of physician time. But there are many barriers to adoption of AI in the healthcare industry. These include the difficulty of assembling the digital data AI needs, as well as a lack of AI workers right across the world.

Patchy digital data

A lack of patient data in digital format is just one of the barriers to AI use in healthcare. Some AI technology sifts through data from groups of patients to determine the best approach for individual patient care.

One example is IBM’s Watson technology, presently capable of using patient data to craft better outcomes for individual cancer patients. Another example is the use of machine learning and advanced analytics to triage patients in intensive care situations and identify those most at risk.

These kinds of technologies rely on the right kind and right volume of patient data being available.

Healthcare technology systems and the data gathering practices of providers don’t always provide the right data in the right format for these type of AI use. Whilst healthcare technologies can be extremely innovative when it comes to diagnosis and treatment, hospitals and clinics also depend on much more outdated technologies to manage patient data.

In some healthcare systems, patient data is still being stored in paper files. In others, it’s stored in a multitude of old systems that aren’t great at sharing information with each other or with new systems.

AI is most effective when it’s able to work with a complete set of patient health records. Getting all this data together is quite a challenge. Of course, there are also many privacy concerns and regulations around sharing patient data in any format, which also makes it harder to marshal the data that AI needs.

Skill shortages and costs

There’s a lot of excitement about the potential of AI for many industries but a shortage of experienced and skilled AI talent may mean that potential can’t be realised everywhere. It will likely take years for the labour force to emerge with the skills healthcare needs to develop and apply AI broadly.

In the meantime, the industry will probably be dependent on third-parties for support with AI technologies and that’s a costly way to apply technology. Skill shortages are likely to be a major limiting factor for applying and developing AI in any sector, including the healthcare industry

Lack of AI workers isn’t the only factor pushing up costs. The sheer cost of developing any new technology means that it can be prohibitively expensive for most patients.

One Delhi cancer centre said that the cost of each Watson consultation was too high for their patients. This means that it isn’t worth the hospital investing in implementing the technology.

Culture and language

One surprising barrier to the adoption of AI in healthcare is cultural differences between markets. Although IBM Watson is being marketed worldwide, much of the data it relies on is relevant to its home market of the US.

This means that some of the treatments it recommends are not available in all markets, or not available within that market’s insurance system. It’s a barrier to adoption if not all of the recommendations it makes are applicable locally.

But culture also means that AI is received and valued differently in the various markets of the world. China has a serious problem of conflict between patients and doctors. There’s a high rate of violence against workers in the healthcare industry and a general lack of respect for the profession.

AI is seen as a potential intermediary between angry patients and workers in the healthcare industry that could help protect practitioners. But in a market where doctors’ opinions are often mistrusted, AI intervention in medical plans could help reassure patients that their physician is giving the correct advice.

Despite the very real barriers to AI adoption in this industry, it’s highly likely that healthcare will see huge advances and widespread use of AI technologies in the next few years – and at the right price.

A report by Accenture predicts huge and rapid growth and wide-scale investment into AI startups in the sector. It’s thought that developments may help replace a shortage of skilled health workers by offering services such as virtual nursing services and also help improve outcomes with precision surgery carried out by robots.

AI can potentially also help fight against problems such as prescription errors and fraud in the system.

The key driving factor is the potential for cost reduction brings to the industry. Demand for healthcare cannot always be met at an affordable price for patients and it’s likely that in the long term we’ll see AI play a role in making healthcare more affordable.

As the world population ages and healthcare demand rises, this is going to be a welcome solution to meeting needs.

Exit mobile version